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Abstract. Perfectly symmetric integration formula of degrees 9-15 with a minimal number 
of points are computed for the square, the circle and the entire plane with weight functions 
exp (-(x2 + y 2)) and exp (-(x2 + y 2)1 /2). These rules were computed by solving a large 
system of nonlinear algebraic equations having a special structure. In most cases where 
the minimal formula has a point exterior to the region or where some of the weights are 
negative, 'good' formulas, which consist only of interior points and have only positive 
weights, are given which contain more than the minimal number of points. 

1. Introduction. Integration rules over a square with a minimal number of 
points are not too important for the computation of particular definite integrals. 
Since the computation of the integrand on a larger set of points does not make too 
much difference for a computer, accurate integration rules are readily available. 
Among these are the product Gauss rules [4], Romberg integration in two dimen- 
sions [1], [6], and iterated integration, where in each dimension, an adaptive scheme 
is used [7], [8]. However, the number of points in an integration rule is very im- 
portant when solving a two-dimensional integral equation by numerical integration. 

Consider for example, the linear homogeneous Fredholm equation of the second 
kind 

(1.1, f(x, yf = X J J K(x, u, y, z)j (u, z duaz, 

where K(x, u, y, z) is the kernel of the equation, X is an eigenvalue and f(x, y) an 
eigenfunction to be determined. Replacing the double integral by a numerical 
integration rule, we get 

n 

(1.2) 7(x, y) = XA wiK(x, xi, y, yi)7(xi, yi, 

where wi are the weights and (xi, ye) the 'abscissas' of the given n-point integration 
rule. The solution of (1.2), J(x, y), is then an approximation to the desired eigenfunc- 
tion f(x, y) while X is an approximation to the corresponding eigenvalue X. Substi- 
tuting in (1.2) the n 'abscissas' of our integration rule, we get 

n 

7j X E Kjiftj 1, tn, 
j=1 

where 7j =f(x,, yj), Kij wK(xi, xj, yi, yj). Thus, our original problem has been 
transformed into a linear homogeneous system of n algebraic equations in n un- 
knowns. The solution of this approximation to Eq. (1.1) requires the computation 
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of the eigenvalues and eigenvectors of the n-dimensional matrix (Kij). The order 
of the matrix, n, plays an important role in determining the difficulty of the compu- 
tation since computing time varies as n3 and memory space varies as n2. Hence, 
small values of n which give the accuracy needed are desirable. 

A second application in which the number of points in an integration rule is 
critical is when a sequence of functions of two variables is to be orthonormalized 
by the Gram-Schmidt process. Here, each function is represented by a vector of 
points, taken to be 'abscissas' of a sufficiently accurate integration rule, since the 
inner product 

(f g) = f f(x, y)g(x, y)dxdy 

is approximated by the sum 

n 

(U, g) = Z wtf(xi, yi)g(xi, Yi) 

Again, the amount of computation and storage depends on n, although in this case, 
only linearly. 

Hammer and Stroud [3] have given perfectly symmetric integration rules over 
the square with a minimal number of points which are accurate for polynomials up 
to degree 7. In this work, formulas will be given which are accurate for polynomials 
up to degree 15. We point out that there may exist integration rules with fewer 
number of points which are accurate for polynomials of a particular degree. Thus 
Radon [10] has given a 7-point formula of 5th degree accuracy while the 5th degree 
formula in [3] requires 9 points. However, formulas which are not perfectly sym- 
metric are much more difficult to compute if they exist at all. Because the region 
under consideration is perfectly symmetric, we limit ourselves to perfectly sym- 
metric rules. 

Since the method of computation does not depend on the region involved, so 
long as it is perfectly symmetric, we have also computed integration rules for the 
unit circle and for the entire plane. In the latter case, suitable perfectly symmetric 
weight functions were used. The discussion will generally refer to the square but 
can be applied to the other regions with the obvious changes. In fact, the only real 
change is in the definition of I[f(x, y)]. 

In addition to minimal formulas, we give 'good' formulas, which consist only of 
interior points and have positive weights, in most cases where the minimal formula 
was not 'good.' These formulas contain more than the minimal number of points. 
In no case did the minimal formulas computed here have a zero weight. Hence, for 
the cases considered here, there is no 'subminimal' rule with fewer than the expected 
minimal number of points needed for consistency with the exactness conditions. 

2. Perfectly Symmetric Rules. The square S with vertices (?1, ?I) is a 
perfectly symmetric region, in that, for each point (x, y) in S, every point of the 
form (?x, ?y) and (+y, ?x) belongs to S. Perfect symmetry of a set implies thus 
that it is closed with respect to change of sign and/or permutation of coordinates. 
Since we are interested in integration rules over S, we shall choose our integration 
points as the union of perfectly symmetric sets, where we shall assign the same 
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weight to all points of a given set. Every such set is well defined by one of its points 
which we shall call its generator. Thus, an integration rule will be given by a set of 
generators and corresponding weights. 

The integration rules given in [3] and [11] consist of points whose generators are 
of the form (0, 0), (a, 0), (b, b). By restricting oneself to points of this form, it is 
only possible to derive rules of degree _ 7. For rules of degree _ 8, it is necessary 
to include points whose generators are of the form (a, b). To get a rule of degree k, 
we have to find weights and points which satisfy the set of equations necessary to 
insure that the rule will be exact for all polynomials of degree ? k. 

We introduce the following notation: 

I[f(X, y)I / f(x, y)dxdy. 

Generator Weight Number of points in set 
(0,0 ) p 1 
(ui, 0) i=1, * ,K1 a* 4 
(v i, v) i =1, *,K2 bi 4 
(wi, zi) i-1, K3 ci 8 

With this notation, we get the following set of equations for an integration rule of 
degree n: 

K1 K2 K3 

(2.1) p + 4 ai + 4 bi + 8 ci = [1], 

K1 K2 K3 

2k 2 aizii2? +4 biv i2 + 4 E ci(wi2k + zi2k) = I(x2k) 
(* ) 

i=1 j~1 ji=1 

k =1, ...*, [n/21, 
'w2 K3 

(2.3jk) 4 >b v 2(j+k) + 4 Z Ci(wi2kZi2' + W2j iZi2) = I(X2jy2k) 

1?j k;j+k=2,...,[n/2]. 

It is clear that an integration rule of degree 2m is identical to that of 2m + 1, 
since both yield the same set of equations. The numbers K1, K2, K3 are determined 
by the form of the system, as we shall see. There are two types of equations in the 
system. Type I consists of those equations which contain all the unknowns or all 
except p, i.e. Eqs. (2.1), (2.2k). Type II consists of those equations in which the 
unknowns p, as, ui (i = 1, - - *, K1) do not appear. These are Eqs. (2.3jk). 

By subtracting from each equation of type II, an equation of type I of the same 
degree, we get a collection of equations in which the unknowns p, vi, bi (i = 1, 
. . ., K2) do not appear. We call this set type II'. The number of equations of type 
II' equals the number of type II. Therefore, the values of K1, K2 are determined 
according to the same considerations as regards consistency of the system. 

For a rule of degree n = 2m, the number of equations of type I is 11 = m + 1 
while that of type II is 12 where 
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, 2 
12 = (m2 , m even, 

= 
[im] [m?+1] (in-1)(m+ 1), m odd. 

For m > 4, there are at least two equations of type II (II') with the same degree. 
From j equations of type II (II') of the same degree, it is possible to get j - 1 equa- 
tions in which appear only the variables ci, ws, zi (i = 1, ** , K3). These equations 
belong to type III and number 13 = 12 - (m-1). Since we have 13 equations and 
3K3 unknowns ci, w , zi (i = 1, *I*, K3) the condition 3K3 ? 13 is necessary for 
the system to be consistent. For m > 4, 13 > 0; hence, for rules of degree > 8, 
K3 P 0 and it is necessary to introduce generators of the type (a, b). 

We summarize the classification of equations into types as follows: 
1. Type I equations: Contain all the parameters (2.1) or all except p (2.2k). 
2. Type II equations: Do not contain parameters ai, ui (2.3jk). 
3. Type II' equations: Do not contain parameters bi, vi. 
4. Type III equations: Involve only the parameter ci, wi, zi. These are solved 

first. They are the most troublesome and cause us to restrict ourselves to m < 7. 
5. Type IV equations: Subset of type II equations with j = 1. Once c , wi and 

zi are computed by solving the set of type III equations, the set of type II equations 
are not linearly independent. The set of type IV equations is a linearly independent 
and complete subset. 

6. Type IV' equations: A similarly defined subset of type II' equations. 
7. A 'good' rule: A rule which has positive weights and abscissas lying within 

the region of integration. 
To get rules with a minimal number of points, K3 should be the smallest integer 

which satisfies 3K3 > 13. This is so since a generator of the form (wi, zi) contributes 
8 points to the integration rule and adds only 3 unknowns, while generators of the 
form (us, 0), (vi, vs) contribute only 4 points while adding 2 unknowns. Thus K3 is 
uniquely determined. Since the number of equations of type II (II') is 12, K1 and 
K2 must satisfy the following conditions: 

2K2 + 3K3 > 12, 

2K1 + 3K3 > 12, 

Ko + 2K1 + 2K2 + 3K3 = 11 + 12, 

where 

Ko = 1, (12+ 11 - 3K3) odd, 

= 0, (12+11 - 3K3) even. 
The meaning of Ko = 1 is that the point (0, 0) which contributes one unknown p 
is included in the rule. 

The following scheme gives an overall picture of the calculation. The details, 
which differ according as 13 is divisible by 3 or not and as m is even or odd, are given 
in subsequent sections. 

1. Consider the system SI,, of type III equations. 
(a) If SI,, is underdefined, assign one or two values x, y as needed. 
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(b) Solve SI,, (Section 5(b)). 
2. Consider the system SIv (SIv,) of type IV (IV') equations, after substitution 

of the values obtained in 1(b). 
(a) If SIv is underdefined, assign one value z and proceed to 2(c). 
(b) If SIv is overdefined, solve all but one equation and compute the 

residual D(x) or Dl(x, y)-a measure of the margin by which the remaining equa- 
tion is not satisfied. Proceed to 3. 

(c) Solve Siv (Section 5(a)). 
3. Consider the system SI of type I equations after substitution of the values 

obtained in 1(b) and 2(c). If there are no assigned values from 1(a) or 2(a), solve 
SI (Section 5(a)) and proceed to 5. Otherwise 

(a) Solve all but one equation and compute the residual D(x), Dl(x, y), or 
D(z), according to the assigned values in the previous step. As in 2(b), this residual 
is a measure of the margin by which the remaining equation is not satisfied. 

4. Iterate between 1(a) or 2(a) and 3 until the residuals involved vanish. 
5. If the solution yields a 'good' rule, terminate the process. Otherwise introduce 

additional points (Section 6) and return to 1. 
Sections 3 and 4 indicate the form of SIv (SIv') in the various cases. Section 5(a) 

gives an algorithm for solving SIv and SI algebraically. Section 5(b) gives the form 
of Si,, and the method of solution. Section 6 discusses the addition of points to 
achieve 'good' rules. 

3. Detailed Description of all Calculations. For the solution of the system of 
equations, it is desirable to distinguish 2 cases: 

Case 1. 13 is divisible by 3. 
Case 2. 13 is not divisible by 3. 
In the present paper, we computed integration formulas for m = 4, 5, 6, 7. For 

these values of m, Case 1 occurs only for m = 7 while Case 2 occurs for the other 
values of m. 

Solution of the System of Equations for Case 1 (m = 7). Since K3 = 13/3 for 
Case 1, the set of equations of type III consists of a system of 13 equations in the 13 
unknowns c , w , zi, i = 1, **, K3. After solving this subsystem, we must solve 
m - 1 equations of type II (II'), each one of a different degree. 

In this work, we chose as the m - 1 equations of the set (2.3jk), those for which 
j = 1, k = 1, 2, * * *, [n/2] - 1. We call these equations type IV. There is a cor- 
responding set which we call type IV' whose relation to type IV is similar to the 
relation of type II' to type II. The solution of these m- 1 equations where the 
unknowns are b , vi, i = 1, *, K2 (a,, us, i = 1, *, K1) will satisfy all the 
equations of type II (II'). Since we must solve m - 1 equations in 2K2 (2K1) un- 
knowns, the minimal K2 (K1) possible is K2 = [m/2] (K1 = [m/2]). For this choice 
of K2 (K1), K1 (K2) is fully determined and its maximum value is K1 = (m + 1)/2 
(K2 = (m + 1)/2). We thus have the following condition: [m/2] ? Ki < [(m + 1)/2], 
i = 1, 2. If m is even, K1 = K2 = m/2 while if m is odd, there are two possibilities: 

(a) K2 = (m + 1)/2, K1 = (m-1)/2, 

(b) K2 = (mi-1)/2, K1 = (m + 1)/2. 
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We must therefore distinguish between the cases m even and m odd. 
(a) m odd. The solution can continue in either of two ways, where the alternate 

way is indicated in parentheses. Choose K2 = (m - 1)/2 (K1 = (m - 1)/2) and 
solve the system of m -1 equations of type IV (IV') in m - 1 unknowns, bi, vi, 
i1 = ,K2 (ai, uj, i = 1,.,K1). After solving this system, it remains to solve 
m + 1 equations of type I in the m + 1 unknowns aj, ui, i = 1,, K (bi, vi, = 

1, *., K2). 
(b) m even. (We include this section for the sake of completeness, although this 

method was never used, since for m = 8, the attempt to solve the type III equations 
failed.) The solution is possible in only one way since K1 = K2 = m/2. The number 
of equations of type IV is m - 1 and therefore this is a system in which the number 
of unknowns is one more than the number of equations. To solve these equations, 
we employ the following method: To one of the m unknowns from the set b j, v , 
i = 1, , K2 which we shall denote by x, we give an arbitrary value. With this 
value of x, we solve the m - 1 equations for the remaining m - 1 unknowns. Then 
m of the m + 1 equations of type I are solved for the m unknowns at, ui, i = 1, 
*.., K1. For the remaining equation of type I, the residue D is computed. This 
residue is a function of x, D(x). We thus have to solve the equation D(x) = 0 to get 
a solution to our system. Since the explicit form for D(x) is not known, the equation 
is solved by bisection, after finding two values xi, X2 for which D(xi) .D(x2) < 0. 

4. Solution of the System of Equations for Case 2 (m = 4, 5, 6). For m = 4, the 
general scheme described below was not used, since in this case 13 = 1 and hence 
we could solve directly the set of equations of type II. We thus could solve the sys- 
tem with only one residual to be made zero while the general scheme would have 
required us to find the zeros of two residuals. 

In Case 2,13 is not divisible by 3 and therefore 3K3 > 13. Hence the set of equa- 
tions of type III cannot be solved directly since the number of unknowns is greater 
than that of equations. Since 13 = [(m - 1)/2] . [(m - 2)/2], we have 

3K3 - 13 = 1,m odd , 

= 2,m even. 

The total number of equations of type II (II') is 13 + m - 1 while the number 
of unknowns is 3K3 + 2K2 (3K3 + 2K1). Hence the following conditions must hold: 

3K3 + 2K2 > 13 + m - 1, 

3K3 + 2K1 > 13 + m - 1. 

Therefore, the minimal value of K2 (K1) is [(m - 1)/2]. For such a choice, K1 (K2) 
is uniquely determined and takes on its maximum value [m/2]. This follows since 
the total number of equations in the system is 13 + 2m and K1 (K2) satisfies the 
requirement Ko + 3K3 + 2K2 + 2K1 = 13 + 2m (Ko = 1 for m odd and Ko = 0 
for m even). Thus, for m odd, K1, K2 are uniquely determined, K1 = K2 = 

(m - 1)/2, while for m even, there are two choices for K1, K2: 

(a) K1 = m/2, K2 = (m - 2)/2, 

(b) K1 = (m - 2)/2, K2 = m/2. 
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Hence, we shall again distinguish between the cases m even and m odd. 
(a) m odd. The set of equations of type III has 13 equations in 13 + 1 unknowns 

ci, wt. zi, i = 1, ***, K3. We assign to one of the unknowns, x, an arbitrary value 
and then solve the resulting system. We then proceed to solve the set of equations 
of type IV, which consists of m - 1 equations in 2K2 unknowns, b i, v , i = 1, * * *, 

K2. Since K2 = (m - 1)/2, this set can be solved. To complete the solution, we 
must solve the m + 1 equations of type I where the unknowns are p, at, ui, i = 1, 

* *, K1. Since K1 = (m - 1)/2, the number of unknowns, m, is less by one than the 
number of equations and hence we solve only m of the m + 1 equations. Denoting 
by D(x), the residual in the remaining equation, we proceed as before to solve 
D(x) = 0 by bisection. 

(b) m even. This is the most complicated case, and as before, can be treated 
in two ways. The number of equations of type III is two less than the number of 
unknowns, and hence we choose two unknowns denoted x, y and assign them 
arbitrary values. Then we solve the set for the remaining 13 unknowns. We next 
choose K2 = (m - 2)/2 (K1 = (m - 2)/2) and solve set IV (IV'). This set has 
m - 1 equations inm - 2 unknowns b , v , i = 1, *, K2 (as, ui, i 3 1, *, K1). 
Therefore we can only solve m - 2 of the equations in this set and for the remaining 
equation, the equation of (2.3kj) corresponding to j = k = 1, (the corresponding 
equation of type IV'), we compute the residual D1. There remains now to solve the 
m + 1 equations of type I for the m unknowns as, u j, i = 1, * *., K1 (be, v, i = 1, 

**, K2). Again we solve m of these equations and for the equation not satisfied, 
Eq. (2.1), we compute the residual D2. We thus have D1 = Di(x, y) and D2 = 

D2(x, y) and it remains to find a point in the (x, y) plane so that D1 = D2 = 0. 
This method was used for m odd to compute the integration rule of degree 10 

(m = 5). For m = 6, no point (xo, yo) was found for which Dl(xo, yo) = D2(xo, Yo) 
= 0. However, points were found for which Di(x, y) = 0 and 

K1 K2 K3 

D2(X, y) = 4 - 4 at - 4 bi - 8 ci > 0. 

Hence, by the addition of the generator (0, 0) which contributes only one point 
to the integration rule, we could satisfy (2.1) by setting p = D2(x, y). This yielded 
an integration rule of degree 12. 

5. The Algorithms for the Solution of the Subsystems. (a) In the solution of 
equations of types IV and I, we have to solve systems of the form 

n 

(5.1) ZpiXik = 7TkX k = O. 1, ... , 2n - 1 

and 

n 

(5.2) poAlk 
+ 

pix lk= Tk, k = 0 ly * * 2n, 

where the unknowns are the pi and xi while the Tk and A are given. (System (5.2) 
arises when an arbitrary value is given to one of the unknowns us or vi.) To solve 
(5.1), we proceed as follows: (cf. Davis and Rabinowitz [2, p. 42]). In step 1, we 
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multiply each equation by x1 and subtract it from the succeeding one. This yields 
the following system of 2n - 1 equations in 2n -1 unknowns: 

n 

Apjixj + (Xi - Xi) = Tk-x lTk1, k=1, ** , 2n-1 
i=2 

At step j, we multiply each of the 2n - j + 1 equations by xj and subtract it from 
the succeeding equation to get the following system of 2n - j equations in 2n - j 
unknowns: 

n 

E piXil+k(Xi -X) (Xi - X2) 
... (Xi - x1) 

j I 

= Tk - Tk- d xi + Tk-2 A xixp - * + (-1)jTk-j(X1X2 . . x1) 
i=1 i=1;p<i 

k = j, *.* , 2n-1 . 

After n steps, we are left with the following system of n equations in the n un- 
knownsX1, ..Xn 

n 

(5.3) 0= Tk+ Z (-1)iTk-iQi, k=n, .. ,2n-1, 
i=1 

where Qi is the symmetric polynomial of degree i in the n variables x1, , xn. 

Q= X1 + X2 + + Xn 

n 
Q2 E =iX 

i=l1 Jii 

Qn =iX2 *.. Xn 

The system (5.3) is a linear system of n equations in the n unknowns Q1, Qn, 

which can be solved by Gaussian elimination. Having computed the Qi, we now 
find the roots of the polynomial 

n P (x) = Xn + 1) iQ iX. i 

This yields the desired roots of (5.1), x1, * *, xn. 

To find values for pi, *.*, pNY we can substitute the values of x1, * xn, into 
(5.1) and solve a set of linear equations by the usual methods. However, it is pos- 
sible to benefit from the special form of the system to compute the pi directly. At 
step n - 1 in the reduction of system (5.1), we have equations of the form 

n-1 

PnXn'(Xn - XI)(Xn - X2) .. (X - Xn-1) =Tn - E(-1)Qi(n)Tnl_i 
i=1 

where Qi(n) is the symmetric polynomial of degree i in the n - 1 variables x1 *.*Xn-1. 

From this equation, one can compute the value of pn, given the values of x1, * *, xn. 
Since each pair pi, xi has the same role in (5.1), we can compute all the pi by inter- 
changing subscripts as follows: 
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T.- iZ-1 (-1) TnX-iQi(j) 

JII==1; i$ij (x1 - xi) 

where Qi(j) is the symmetric polynomial of degree i in the n - 1 variables xl, 
X22 .. * Xj-11 Xj+1j 

.. * Xn- 

By multiplying each equation of system (5.2) by A and subtracting it from the 
succeeding equation, we can bring (5.2) to the form of (5.1). We then have a system 
of 2n equations in 2n unknowns xi, * *, xn, -p, ***, n where pi = p i(xi - A). 

(b) The first stage in the solution of the original system of equations involves 
the solution of a set of type III. For m = 4, 5, 6, 7 the number of such equations to 
be considered is only 1, 2, 4, 6 respectively. This set results from the elimination of 
one equation of each degree from the set of type II. This elimination can be done 
in various ways. In our method, the following equations resulted: 

K3 

E (w2 - 
Z 2)2(W i2Z.2i(w2 + Zi 2)k = aik 

j =1, .. * , [(m -2)/2], k = O. 1, ** m-2j - 2 

where 

ajk = 8 I[(X2 _ y2)2(x2y2)j(X2 + y2)k] 

aJk can be readily expressed in terms of the known values of I[x2sy2tJ. 
By setting xi = W,2 + z2, pi = C,(W,2 - Z,2)Wi2Zi2, the m - 3 equations of 

(5.4) for j = 1 take the form of (5.1) and can be treated as above. Knowing these 
values of xi, pi, the m - 5 equations of (5.4) for j = 2 are linear in the unknowns 
(W,2Z,2) and readily solvable. For m = 6, 7, equations of type III exist for j = 1, 2 
only so that we can get values of W,2Z,2 and W,2 + Zi2. By solving a quadratic equa- 
tion, we find wi, zi and then from pi, we find ci. For m - 5, equations of type III 
exist only for j = 1. There are two equations and three unknowns. Hence as men- 
tioned in Section 4(a), we take an arbitrary value for zi and solve for the other two 
unknowns. For m > 8, system III could not be solved by the above method nor 
was any other method found. 

6. Additional Points. Since we were interested in 'good' integration rules with 
positive weights and with points within the region of integration, we added points 
to the integration rule in those cases where either a real solution did not exist or 
where the minimal rule had external points or negative weights. This yielded 'good' 
rules although with more than the minimal number of points. The addition of 
generators was done in such a manner as to minimize the total number of points in 
the rule as follows: 

(a) To rules which did not contain the generator (0, 0) it was added, thus adding 
only one point while contributing one free parameter. In rules which did contain 
(0, 0) it was replaced by a generator of type (v, 0) or (v, v). This added three points 
while also contributing one free parameter. 

(b) If step (a) was not successful, the following device was attempted for rules 
without (0, 0). Two generators of type (u, 0) or (v, v) were replaced by the generators 
(0, 0) and (w, z). This increased the number of points by one, while remaining with 
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a system of n equations in n unknowns. For rules with the point (0, 0), it and a 
generator of type (u, 0) or (v, v) were replaced by a generator of type (w, z). This 
added three points while again remaining with a system of n equations in n un- 
knowns. 

(c) If the above actions were unsuccessful, then the minimum number of addi- 
tional points was 4. This occurred either by the addition of a generator contributing 
4 points to the integration rule and 2 free parameters or by the exchange of a gen- 
erator contributing 4 points by one contributing 8, yielding one free parameter. 
One could, of course, continue to add points in case of failure, at each stage adding 
a minimal number of points. However, there is a limit to this process insofar as it 
concerns the efficiency of the resulting integration rules. Since the product of two 
m-point Gauss integration rules requires m2 points and is accurate for all polynomials 
up to degree 2m - 1, only rules of degree 2m - 1 requiring less than m2 points are 
of interest. 

7. Summary of Integration Rules Computed. (a) For the square, the following 
rules were computed and are listed in Table 1. For degree 9, a 'good' rule with the 
minimal number of points was found. This rule uses 20 points while the product 
Gauss rule of degree 9 requires 25 points. For degree 11, the minimal integration 
rule of 25 points had one generator exterior to the square. Upon the addition of 3 
more points, a 'good' rule was found with 28 points while the corresponding Gauss 
rule has 36 points. For degree 13, no rule containing the minimal number of points 
was found. However, upon the addition of the origin, a 'good' rule with 37 points 
was computed. The corresponding Gauss rule consists of 49 points. Finally for de- 
gree 15, the minimal rule of 44 points had one exterior generator. A 'good' rule with 
48 points was found as against 64 for the corresponding Gauss rule. 

(b) For the unit circle, the following rules were computed and are listed in Table 
2. For degree 9, the minimal rule of 20 points had an exterior generator. A 'good' 
rule with 21 points was found. For degree 11, two 'good' formulas with 28 points, 
3 more than the minimum, are given. For degree 13, the 'good' formula has 37 
points as in the case of the square while for degree 15, the 'good' formula has the 
minimal number of points, 44. Some of these formulas, namely, the degree 9 formula 
with 21 points, a degree 11 formula, and the degree 15 formula are given in Krylov 
and Sul'gina [5]. They were computed in a different fashion and partial details are 
given by Mysovskih [9]. A different degree 9 formula with 21 points is given 
in [3]. 

(c) For integrals over the entire plane, two sets of rules were computed cor- 
responding to the weight functions 

exp (-(x2 + y2)) and exp (-(X2 + y2)1/2) 

respectively. For these weight functions, rules up to degree 7 are given by Stroud 
and Secrest [11]. For both weight functions, rules were computed for degrees 9 to 15 
and are listed in Tables 3 and 4. For degrees 9 and 15, the number of points re- 
quired for 'good' rules was minimal. For degree 11, two 'good' rules are given in each 
case, requiring 28 points. For degree 13, rules using 37 points are given but in both 
cases one weight is negative. Since degree 13 is the most difficult case to compute, 
we did not pursue the matter further. 
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TABLE 1 

Formulas for the Square 

Generators Weights 

degree 9 20 points 
.9845398119422523 .0 .0716134247098111 
.4888863428423724 .0 .4540903525515453 
.9395672874215217 .9395672874215217 .0427846154667780 
.8367103250239890 .5073767736746132 .2157558036359328 

degree 11 25 points 
.0 .0 .3653795255859022 
.7697990683966493 .0 .2442720577517539 

1.044402915409813 .0 .0277561655642043 
.4134919534491139 .4134919534491139 .3089930361337136 
.9357870124405403 .9357870124405403 .0342651038512293 
.5756535958404649 .8830255085256902 .1466843776513117 

degree 11 28 points 
.8989737240828844 .0 .0176679598882646 
.7632367891419969 .0 .2322248008989674 
.8949648832822285 .8949648832822285 .0715516745178401 
.6322452037101431 .6322452037101431 .2192868905662522 
.2797353125538562 .2797353125538562 .2965842326220580 
.9602661668053869 .4347413023856830 .0813422207533089 

degree 13 37 points 
.0 .0 .2995235559387052 
.9909890363004588 .0 .0331100668669073 
.6283940712305196 .0 .1802214941550577 
.9194861553393097 .9194861553393097 .0391672789603492 
.6973201917871096 .6973201917871096 .1387748348777338 
.3805687186904865 .3805687186904865 .2268881207335663 
.9708504361720127 .6390348393207334 .0365739576550950 
.8623637916722844 .3162277660168378 .1169047000557597 

degree 15 44 points 
1.315797935069747 .0 - .40980941939297 (-5) 
.9796158388578564 .0 .0414134647558384 
.6375456844500517 .0 .1837583771750436 
.9346799288936658 .9346799288936658 .0280217865486269 
.7662665721615083 .7662665721615083 .0948146979601645 
.5138362475917853 .5138362475917853 .1688054053337613 
.2211895845055072 .2211895845055072 .1898474000367674 
.9769495664551867 .6375975639376926 .0331477474104121 
.8607803779721935 .3368688874716777 .1135237357315838 

degree 15 48 points 
.9915377816777667 .0 .0301245207981210 
.8020163879230440 .0 .0871146840209092 
.5648674875232742 .0 .1250080294351494 
.9354392392539896 .9354392392539896 .0267651407861666 
.7624563338825799 .7624563338825799 .0959651863624437 
.2156164241427213 .2156164241427213 .1750832998343375 
.9769662659711761 .6684480048977932 .0283136372033274 
.8937128379503403 .3735205277617582 .0866414716025093 
.6122485619312083 .4078983303613935 .1150144605755996 
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TABLE 2 
Formulas for the Circle 

Generators Weights 

degree 9 20 points 
.8377170225998396 .0 .1851958765246450 
.3924393142315810 .0 .2930225148631698 
.5505609906724360 .5505609906724360 .2296152967863584 
.4249164962326038 .9112013890413142 .0387822376116376 

degree 9 21 points 
.0 .0 .0043173954188430 
.9499490053854548 .0 .0734867016303473 
.4184300297249359 .0 .3295210136662689 
.8485281374238570 .8485281374238570 .0046091399966757 
.3830079234911947 .7409163950514299 .1883509796247228 

degree 11 28 points 
.9619017737816972 .0 .0513100527123566 
.7745966692414835 .0 .1136282065100473 
.3287526591967855 .0 .2083682752319387 
.4683708939890903 .8112421851755608 .0790679779683282 
.3375826402485671 .5847102846637651 .1269778365032246 

degree 11 28 points 
.9669004345445009 .0 .0478396326404247 
.7226054070052285 .0 .1597003917456590 
.3233163607428629 .0 .2016322022034297 
.7036534680827588 .7036534680827588 .0165089733783664 
.4638891735186042 .4638891735186042 .1801837855454157 
.4135214625627066 .8138386408455507 .0897665889420765 

degree 13 37 points 
.0 .0 .1604310638138027 
.3879803784555729 .0 .1424323658922069 
.9358527527678654 .0 .0556845391070962 
.7134059509780893 .0 .1114444717392537 
.6759153919798939 .6759153919798939 .0449789946826613 
.3835039628013994 .3835039628013994 .1347199228191621 
.3464101615137754 .9066277008560241 .0316618826416774 
.7106593341863341 .3816598192059473 .0963531689601313 

degree 15 44 points 
.2528637970912295 .0 .1252902085642858 
.5777289284448234 .0 .1095003911263660 
.9897468025114907 .0 .0167126254970435 
.8738369566448817 .0 .0662374557963763 
.3754168246261542 .3754168246261542 .1274283726817204 
.6892993807911362 .6892993807911362 .0261028601843605 
.5976143046671968 .5976143046671968 .0660009346611046 
.3657908004006625 .8830971113185893 .0425230658266824 
.2930307227106603 .7074387449600663 .0815395916164132 
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TABLE 3 
Formulas for the Plane with Weight Function: exp [-(x2 + y2)] 

Generators Weights 

degree 9 20 points 
1.538189001320852 0.0 .1237222328857347 
1.224744871391589 1.224744871391589 .6544984694978697 (-1) 
0.4817165220011443 0.4817165220011443 .5935280476180875 
2.607349811958554 0.9663217712794149 .1349017971918148 (-2) 

degree 11 28 points 
2.757816396257008 0.0 .8176645817675417 (-3) 
1.732050807568877 0.0 .4363323129985824 (-1) 
0.6280515301597559 0.0 .5373255214498174 
1.224744871391589 2.121320343559643 .3636102608321520 (-2) 
0.7071067811865475 1.224744871391589 .9817477042468103 (-1) 

degree 11 28 points 
2.907364117106118 0.0 .4106569066965604 (-3) 
1.528230917660483 0.0 .9065690889492120 (-1) 
0.6178819071436261 0.0 .5266955729327722 
1.904162039910276 1.904162039910276 .9681125175723808 (-3) 
0.9724173472297303 0.9724173472297303 .1515812331366514 
2.061552812808830 0.8660254037844387 .7542839504417270 (-2) 

degree 13 37 points 
0.0 0.0 - .7482913219380363 
2.403151765001966 0.0 .3521509661098668 (-2) 
1.298479973315986 0.0 .1650055872539264 
1.912428205769905 1.912428205769905 .8537825937946404 (-3) 
0.9478854439698223 0.9478854439698223 .1326938806789336 
0.3188824732576547 0.3188824732576547 .6447719928481539 
3.325657829663178 1.145527285699371 .1799266413507747 (-4) 
1.882228401823884 0.8826073082889659 .1279412775888998 (-1) 

degree 15 44 points 
3.538388728121807 0.0 .8006483569659628 (-5) 
2.359676416877929 0.0 .3604577420838264 (-2) 
1.312801844620926 0.0 .1187609330759137 
0.5389559482114205 0.0 .4372488543791402 
2.300279949805658 2.300279949805658 .3671735075832989 (-4) 
1.581138830084189 1.581138830084189 .5654866776461627 (-2) 
0.8418504335819279 0.8418504335819279 .1777774268424240 
2.685533581755341 1.112384431771456 .2735449647853290 (-3) 
1.740847514397403 0.7210826504868960 .2087984556938594 (-1) 

8. Examples. We tested the various rules for a square on four functions and 
compared the errors with those obtained by using Gaussian product rules. The 
results are listed in Table 5 where we have used the notation M, to denote a minimal 
rule with p points and G.2, the product of 2 Gauss n-point rules. These examples 
seem to indicate that not only is a product Gauss rule of given degree superior to 
other formulas of that degree but also that in many cases, a Gauss rule of lower 
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degree is equal if not superior to a minimal rule of higher degree. This is due to the 
fact that a product Gauss rule of degree n integrates exactly all monomials x iy j for 
which i ? n, j < n while the two-dimensional rules of degree n integrate exactly 
all monomials xiyj for which i + j ? n. Because of this, it turns out that the 
number of points in rules of comparable accuracy is about the same. 

TABLE 4 
Formulas for the Plane with Weight Function: exp [-(x2 + y2) fl 

Generators Weights 

degree 9 20 points 
6.822859174233539 0.0 .3380228176732269 (-1) 
1.901350903458987 0.0 .1467201651910359 (+1) 
4.260195453867070 4.260195453867070 .6973178170307865 (-1) 
6.693991707281686 14.77112509749386 .3030570706813315 (-4) 

degree 11 28 points 
12.74800100302598 0.0 .1528937836199174 (-3) 
6.548756194884845 0.0 .2460475747386993 (-1) 
1.760536818970077 0.0 .1409433533958677 (+ 1) 

10.05412033203744 5.804749080166705 .4416296048062511 (-3) 
4.616780734333329 2.665499599756826 .6786094118455858 (-1) 

degree 11 28 points 
13.23694157142503 0.0 .1020154285801705 (-3) 
5.858647139727296 0.0 .5959360016181913 (-1) 
1.719290407899388 0.0 .1389898268451152 (+ 1) 

12.76644300362842 12.76644300362842 .1691597241187992 (-5) 
3.556098987915152 3.556098987915152 .1189929098056537 
9.300537618869137 4.847679857416328 .1103920675225255 (-2) 

degree 13 37 points 

0.0 0.0 .3497776022412480 (+1) 
19.67638186041246 0.0 .4425802565915590 (-6) 
8.770037945037203 0.0 .4553409712395994 (-2) 

10.20568519238436 10.20568519238436 .2775303265875652 (-4) 
3.591105603680783 3.591105603680783 .3312777924884182 (+ 1) 
3.242171893025389 3.242171893025389 - .1010440929995067 (+ 1) 

11.94169301540818 4.911904665577694 .1127213703086534 (-3) 
3.287383483530638 3.162277660168379 .4921143017387419 (+2) 

degree 15 44 points 
19.97643084360520 0.0 .1783029629694328 (-6) 
11.52881449694446 0.0 .3075756711058412 (-3) 
5.150382368000088 0.0 .8468502916013910 (-1) 
1.610748055769942 0.0 .1334535254221420 (+ 1) 

12.91466976228591 12.91466976228591 .7736736266035205 (-6) 
7.598036758945039 7.598036758945039 .5762989342268486 (-3) 
3.275323454134366 3.275323454134366 .1439495304734647 

14.96412806506222 6.198344793636629 .5384883122895214 (-5) 
8.095727497543633 3.353360126759371 .3365458295852239 (-2) 
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In addition, all the rules were tested to see to what accuracy the polynomials, for 
which they were supposed to be exact, were integrated. Using the listed weights and 
abscissas and floating point arithmetic correct to over 18 decimal figures, we found 
the largest relative error to be less than 10-12. 

TABLE 5. 

Errors in Integration of Various Functions by Minimal Rules with p Points, Mp, 
and by Products of n-Point Gauss Rules, Gn2. 

Rule\Function exy (1 - xy)-' sin (27r(x + 2y)) ((x + 1)2 + (y + 2)3)-1 

M20 2.3(-8) 1.1(-2) 2.6(-7) 1.1(-9) 
G52 1.1(-13) 2.6(-2) 2.2(-8) 6.8(-11) 
M25 1.9(-10) 1.0(-2) 1.3(-9) 2.3(-12) 
1128 3.0(-10) 2.9(-2) 2.7(-9) 6.3(-12) 
G62 < 10-15 1.9(-2) 1.0(- 10) 1.1(-13) 
M37 1.4(-12) 2.3(-2) 1.8(-11) 1.9(-13) 
G72 < 10-15 1.3(-2) 3.6(-13) 1.0(-14) 
M144 3.8(-14) 1.8(-2) ].1(-13) 4.5(-14) 
M48 1.8(-14) 1.8(-2) 9.4(-14) 4.9(-14) 
G82 < 10-15 1.1(-2) 8.0(-16) 8.0(-17) 
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